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after that it again enlarges but with the opposite 
orientation of the Poynting vector. A further interest- 
ing property can be found in Figs. 8(e) (tr) and in 
8(i) (Tr). The values of Ak for the cases drawn imply 
xl = x4 and x2 = x3. The dispersion surface in the 
plane of incidence is created by the three lines iden- 
tical with the asymptotes. The last interesting property 
we wish to point out is illustrated in Fig. 8(c). The 
dispersion surface in the plane of incidence is iden- 
tical for cr and 7r polarizations. 

APPENDIX B 

Reflection coefficient 

We define the reflection coefficient according to James 
(1963) as 

R=Iz212/Iz l l  2 (13) 

for the symmetrical reflection 440; for the extremely 
asymmetrical reflection 404 the formula used leads 
to zero. It was found (e.g. Bedyfiska, i973; Colella, 
1982) that in cases of extremely asymmetrical reflec- 
tions linearization of the coefficients of the dynamical 
equations is not permissible. We added to the 
coefficients A, from (1) and (2) the term - ( A .  A)/k  2 
and calculated for k =km the dispersion surface in 
this more accurate approach. The result of this calcu- 
lation gives us in the 3 I.l,m -1 neighbourhood of the 
Laue point a picture of the dispersion surface nearly 
identical with that calculated according to (5) (the 
shift in the values o f  X1,2, 3 is of the order of 10 -5 ~m-1). 
We conclude that the dependences illustrated in Fig. 
5 would stay unchanged in the more accurate 
approach. For this reason we can also expect that the 
resultant dependences shown in Figs. 6 and 7 are 
valid. 

No great problems arose when we attempted to 
proceed in the obvious way to apply the boundary 
conditions and also to calculate the reflection 
coefficient with the linearized coefficienlts A,. The 
formula derived from (13) for Si[000, 440, 404] and 
the 440 reflection 

R44o= BE(Ba3- B)2/(BE2B33- B2) 2 (14) 

does not lead to physically impossible or to 
apparently improbable results. 

Several examples of the reflection coefficient R44o 
are shown together with the corresponding dispersion 
surfaces in Fig. 8. The angular scale given in Fig. 8(a) 
follows from (11). The reflection coefficient R44o 
equals one for the ranges of total reflection. The only 
point for which the calculation using the linearization 
is indefinite is x=x4 and Ak such that Bo=2B/3 
[Fig. 8(e) (tr) and Fig. 8(i) (zr)]. From the continuity 
of R440 we established R44o = 1 at this point. 
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Abstract 

A modification of the Hamilton-Zachariasen theory 
of extinction in imperfect crystals is reported. Unlike 

* This paper should be regarded as forming part of the Ewald 
Memorial Issue of Acta Cryst. Section A published in November 
1986. The manuscript was received in its final form too late for 
inclusion. 

the generally adopted Darwin mosaic model the crys- 
tal is supposed to consist of elastically deformed 
domains so that individual reflection events can be 
treated within the quasiclassical approach developed 
by the author in an earlier study [Acta Cryst. (1984), 
A40, 120-126]. In this way a modified expression for 
the scattering cross section, taking into account 
multiple wave interference, is introduced into the 
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energy transport equations. Under the assumption of 
a constant magnitude of the strain gradient and of 
spherical isotropy of its orientation distribution, gen- 
erally valid results formally compatible with the stan- 
dard solution of Becker & Coppens [Acta Cryst. 
(1974), A30, 129-147] are obtained. A significant 
achievement is the physically correct description of 
the primary extinction effect. 

1. Introduction 

The problem of an adequate description of extinction 
effects in real crystals has been subject to extensive 
scrutiny since the advent of X-ray structure analysis. 
Darwin (1922) introduced, for crystals of intermedi- 
ate perfection, the mosaic model assuming the crystal 
to be composed of perfect but slightly misoriented 
blocks. Reflecting power calculations were performed 
for special sample geometries by various authors until 
Hamilton (1957) and Zachariasen (1967, 1968) intro- 
duced the energy transport equations (ETE) 

OIo/OSo= - t r (  Io - IG), 
(1) 

OIG/OSG = --tr( IG -- Io). 

Here Io, IG represent the intensities of the transmitted 
and reflected waves, respectively, and So, SG are the 
corresponding beam paths. The angular dependence 
of the coherent scattering cross section tr is deter- 
mined by convolution of the intrinsic rocking curve 
tr(e) of a single mosaic block with the misorientation 
distribution function w(,~O). 

Later, solutions of (1) were obtained for quite 
general crystal shapes by various authors, the stan- 
dard references being the works of Cooper & Rouse 
(1970) and Becker & Coppens (1974) (henceforth 
BC). Since then the treatment based on the ETE has 
become a routine technique included in several struc- 
ture refinement programs. However, this approach 
suffers from certain deficiencies, of which the most 
important in practice seems to be its failure to describe 
primary extinction. This arises from the fact that no 
useful solutions for finite-size mosaic blocks are avail- 
able in the dynamical theory of diffraction because 
of the complexity of the phase boundary conditions. 
This problem has been by-passed in a first-order 
approximation by BC solving the ETE again, this 
time for individual blocks. 

An entirely new approach, largely overcoming this 
problem, was introduced by Kato (1976, 1979, 1980). 
He starts under very general assumptions from the 
Takagi (1962, 1969) and Taupin (1964) equations. 
The transfer to the case of a crystal containing some 
random distribution of imperfections is performed 
by ensemble averaging the mutual phases of waves 
corresponding to different dynamical beam trajec- 
tories. As a price to pay for the general formulation, 
the results involve phase correlation lengths of higher 
orders which are difficult to calculate precisely, even 

for quite simple model cases. In practice, satisfactory 
results are obtained only for phase correlation lengths 
t* not exceeding the primary extinction distance A, 
i.e. again for small primary extinction. On the other 
hand, in the limit of t * ~ A  the Takagi-Taupin 
equations are transformed to a form equivalent to 
ETE except that the formulation employs incident 
spherical waves and an angularly independent cross 
section tr. 

It can be concluded therefore that the use of the 
ETE in the limit of secondary extinction is physically 
correct. We shall start from this point and concentrate 
on the search for a new model which could replace 
the concept of mosaic structure and yield an analytical 
expression for or, taking into account the primary 
extinction. In the next section we shall for this pur- 
pose briefly reconsider some im]aortant features of 
dynamical wave propagation in crystals. Our argu- 
ments will be based on the neutron diffraction case 
where nonrelativistic quantum mechanics (e.g. 
Messiah, 1962) is directly applicable. All the par- 
ticular results have, however, analogous validity for 
X-rays. We shall also confine ourselves to the case 
of zero absorption; the extension to absorbing crystals 
can be accomplished to first order (no anomalous 
effects) exactly as in the treatment of BC. 

2. Wave propagation in crystals 

According to the standard treatment of the dynamical 
theory of diffraction [ e.g. Rauch & Petrascheck (1978) 
for neutrons and Pinsker (1978) for X-rays] in the 
simplest, one-beam, case, an incident vacuum plane 
wave u~exp(ikr)  excites a single plane wave 
Uo exp (iKr) in the crystal interior. The nonzero inter- 
action potential, represented by its matrix element 
V0 = (2zrh2/m) (Fo/O) (Fo is the structure factor, ~2 
the elementary-cell volume and m the neutron mass) 
brings about only a slight reduction/increase of the 
wave-vector magnitude accompanied by a tiny change 
in flight direction to satisfy the continuity conditions 
on the crystal surface. Hereafter these effects will be 
neglected. 

Whenever the Bragg condition is satisfied (the two- 
beam case is assumed), inside the crystal there exist 
two symmetry-equivalent propagation directions of 
the transmitted and reflected waves, ~o -- u0 exp (iKr) 
and ~bG = Uo exp [ i(K+ G)r] respectively. This 
degeneracy is removed by the wave-crystal inter- 
action represented by the additional matrix element 
Vo = (2¢rh2/m) (Fo/~2). The eigenstates correspond- 
ing to the two branches of the dispersion surface are 
described by wavefunctions of the type 

~//1.2 --" U(I'2) exp (iKl,2r) + U(G '2) exp [i(K1,2 + G)r]. (2) 

The ratio of the amplitudes u~)/U~o i) is given by 

cl.2 = y + ( y 2 +  1)u2, (3) 
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where Y=aI(2xo) and Xo = Vol[h2k21(2m)] and a 
is defined by Kulda (1984). 

If the transition from vacuum to crystal is instan- 
taneous, which is the case normally considered in the 
dynamical theory, both eigenstates are excited simul- 
taneously, the amplitudes being determined by the 
boundary conditions. During further propagation 
inside the crystal the small difference of the order of 
V~ in energy eigenvalues leads to interference causing 
the well known Pendell6sung oscillations of intensity 
between the transmitted and reflected waves. Hence, 
for any point on the exit surface exact knowledge of 
the wave-field phase is required if the reflecting power 
is to be determined precisely. For this reason the 
dynamical theory provides really simple results only 
for infinite plane-parallel plates. 

The situation changes substantially when the lattice 
orientation varies along the beam path in the sample 
on a scale exceeding the dynamical reflection width 
Wo "- 1" as in the case of elastically deformed crystals. 
Here the parameter Y depends on the local displace- 
ment U(r) of the atomic positions through a = 
ao-2hO(GU)/Os6 (Takagi, 1969). Typically the 
incident wave will not satisfy the Bragg condition 
when entering the crystal so that in fact only the 
one-beam case will be realized. According to the 
adiabatic theorem of quantum mechanics (Messiah, 
1962), the wavefunction will follow continuously the 
variation of its parameters which all depend on Y. 
If, for instance, the starting value was Yo,~0 and 
because of (2) and (3) ~F = 01 = 0o, then, in the case 
of very slight deformation, along all the trajectory 
inside the crystal ~F = ~1 and on the exit surface where 
Y >> 0 we get aF = ~bl = ~b~. 

Obviously in this ideal case only one of the eigen- 
states is excited. At finite rates of Y variation, 
however, transitions to the other eigenstate are 
excited (Balibar, Chukhovskii & Malgrange, 1983; 
Kulda, 1984). Their probability may be calculated as 

1 

w=exp[-(2V~/h) ~ ( 1 -  y2)l/210y/asol-1 dY]. 
- 1  

(4) 
Because the transition point is not fixed within the 
domain of -1  <- Y--- 1, no well defined phase relation 
between the old wave and the newly created one 
exists. Hence no Pendell6sung oscillations take place 
and the reflection probability for an incident plane 
wave is given just by r = 1 - w. In the case of a constant 
strain gradient we have 

r =  1 - e x p  (-Qla/tO/aso1-1) (5) 

with 

Q=FEA3/(aEsin20). 

To determine the integrated reflecting power po one 
has to integrate r over the whole misorientation range 
80 in the sample. For symmetric reflection on a plane 
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parallel plate of thickness D, uniformly bent with 
radius R, we obtain for Po a particularly simple 
expression, 

po=(D/R)cotO[1-exp(-QR/cosO)]. (6) 

We recall that the validity of (5) and (6) is restricted 
to cases where 80 > WD (for details see Kulda, 1984) 
but does not require special assumptions concerning 
the crystal dimensions and shape. In fact, for crystals 
less than the extinction distance, Io/tO/Osol becomes 
large and a power-series expansion in (5) and (6) 
leads to kinematical expressions r = QlaAO/aso[ -1 and 
po = QD/sin 0. Hence (6) is both simple enough and 
reasonably accurate for a wide range of degrees of 
crystal perfection. For these reasons it seems more 
promising to base a statistical model for extinction 
treatment in real crystals on elastically deformed 
rather than perfect lattice domains. 

3. The RED model 

We shall start from the following two basic assump- 
tions concerning the macroscopic distortions in the 
crystal: 

1. The crystal is built up of domains distorted by 
elastic deformation of random magnitude and 
orientation. 

2. Local departure from the precise Bragg-angle 
value remains continuous on domain boundaries. 

In other words, the true dependence AO(so, s~) is 
approximated by a random-walk process in discrete 
time (Feller, 1970), the step length being determined 
by the domain size. The beam transport through the 
crystal will be considered as a series of independent 
reflections on those parts of the random-walk 
sequence which have proper orientation with respect 
to the incident plane wave (Figs. la, b). Each 
individual reflection will be treated via the reflection 
coefficient r derived in the preceding section (5). 

In order to arrive at simple analytical results we 
shall ~omplete the general assumptions by several 
further specifications: the domains will be of spherical 
shape with a constant diameter d; the deformation 
will be represented by uniform bending with a con- 
stant radius R; the sign of the deformation gradient 
will change at random with the transition probabilities 
p+, p_ being independent of position in the crystal; 
and for reflections in individual domains the diffrac- 
tion vector G will be parallel to the atomic position 
displacement U. 

As a consequence, the mean path per domain is 
l= 3d/4 and the corresponding variation of / tO is 
given by 

80= flOAO/asol-- rcos O/R. 
The probability distribution for various/tO values, 

if it exists, has to be an invariant of the random-walk 
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process whose behaviour depends in a profound man- 
ner on the transition probabilities p+, p_. Here we 
shall give two examples. 

The choice of constant values p+ = p_ = ½ results in 
an unrestricted random walk, in which case no 
invariant probability distribution for /tO exists. 
Although this might be a good approximation to the 
real situation with multimodal misorientation distri- 
bution functions as observed frequently in experi- 
ments (Schneider, 1975), it is unsuited for further 
mathematical treatment. 

For the rest of this paper we shall make use of 
another interesting possibility and fix the width of 
the total misorientation range to 2 , /so  that -*/--- A0 <_ 
*/ and we shall put 

p+=(*/-AO)/(2V), p_=(*/+AO)/(2V). (7) 

Clearly, for A0=77 one has p + = 0  and p _ =  1 and 
analogously p+ = 1, p_ = 0  for AO =-77, implying a 
bounded random walk with reflecting walls. In this 
case a stationary probability distribution" exists and 
has the binomial form 

with N = 2,1/80 and j = (*/+ ao)/60. The local mis- 
orientation angle A0 will now oscillate about zero, 
achieving only extremely rarely values near +*/. This 
behaviour is demonstrated in Fig. 2 on a sequence of 
100 domains with N = 10 obtained with the help of 
a pseudorandom number generator. 

As can be seen from Figs. l ( a )  and 2(a),  PN(j) 
refers in fact to the domain boundaries characterized 
by discrete misorientation values ao =j60-  ",7. The 
probability for a wave to hit a properly oriented region 

? 
< 

\\x\~ / 

is given by another distribution function fin (j)  refer- 
ring to the frequency of transitions between the states 
characterized by j, j + 1 and vice versa, which can be 
expressed as 

PN(j) = p+PN(j) + p_PN(j + 1) 
(8) 

= . . . = ½ [  PN-,(j-- 1)+ PN-,(j)]. 

For large N we can use for both /3N(j) as well as 
PN(j) the same Gaussian approximation 

w(j) = (2 / r tN)  '/2 exp [ -  ( 2 j -  N)2/2N] (9) 

with variance N/4. The mean recurrence time is, for 
any state, given by the reciprocal value of the station- 
ary probability distribution function. For j  = N/2 (i.e. 
A0=0) ,  we obtain from (9) r=(TrN/2) 1/2 steps. 
Hence for an incident wave corresponding to the 
maximum of the rocking curve the mean free path 
between subsequent reflections is ?= r l =  
( zrN/2)ll2f.. 

Switching to the angular scale again, we can rewrite 
(9) in the form 

WRED(A0) = w(j) dj/ dAO 

= ('rr*/60) -~/2 exp (-A02/*/60). 

=2 

-NI2 

(10)  

I i I i I I I 

} 2o 40 60 
s i t  

(a) 

20 

10 

A0o A0 x 0 

(a) (b) 

Fig. 1. Variation of A0 in a section of a RED sequence (a) and 
the corresponding wave trajectory (b) characterized by an initial 
value A0o; broken lines indicate new waves created with prob- 
ability given by equation (4); the z,'x axes are parallel and 
perpendicular to the scattering planes, respectively. 

V 
-4 -:~ 

\ 

l 
2 4 

~d'O 

(b) 
Fig. 2. A computer-simulated RED sequence with transition prob- 

abilities given by equation (7): (a) the A0 variation along the 
beam path and (b) the abundance of particular domains in this 
sequence. 
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The angular parameters r/, 80 can be expressed in 
terms of ~ and R so that 

WRED(AO)=(R/?cos O) 
xexp[-zr(AOR/?cos 0)2]. (11) 

In what follows WRED will play a role analogous to 
the mosaic block orientation distribution function in 
the traditional treatment. Unlike the mosaic model 
the effective width of WRED(AO) [but not that of w(j)] 
here becomes angularly dependent through the factor 
dj/dAO=R/(lcos 0). This takes into account the 
fact that Bragg reflection is less and less sensitive to 
angular deviations with increasing 0. 

According to our assumptions the reflection 
probability for a wave hitting a properly oriented 
domain is given by expression (5). Hence the new 
expression for the coherent scattering cross section 
tr to be inserted into the ETE can be written as 

O'RED(A0) "-" rWRED(A0) dAO/dso, G 

= [ 1 - e x p  (-QR/cos 0)](1/t-) 

xexp[-~-(AOR/?cos 0)2]. (12) 

It is worth noticing that in the kinematical limit QR 
0 and (12) reduces to 

O'RED(A0) = QWRED(AO), 
which coincides with the conventional expression for 
type I crystals. 

4. Solution of the ETE 

Within our approximation erRED stays independent 
of coordinates So, sG so that the original mathematical 

I ly A=0.01 
/ 

8 ~ = 0 . 1  

6 

4 ~ A=0.33 

2 

o ; 6 

Fig. 3. The dependence of the extinction correction y- t  on XBc 
for various values of the parameter A; for a given A the upper 
and lower curves correspond to sin 0=0 .2  and sin 0=0.7 ,  
respectively. 

structure of the ETE is unaltered and we can use the 
BC solution for Gaussian mosaic distribution. The 
reflectivity term in square brackets in (12) renormal- 
izes, however, its dependence on the kinematical 
reflecting power Q represented in the BC treatment by 

XBC = 2QotoT. (13) 

Here aG is the total mosaic width parameter of 
w(AO)= aG exp (--Tra2A02) and T denotes the 
average beam path in the sample. In the RED 
approach an equivalent role is played by 

XREO = 2[1 -exp(-QR/cos O)]T/E (14) 

Putting A=a~/T and assuming numerical equality 
O I G / a R E  o = R/? we can express it as 

XRED = [ 1 - e x p  (--xBcA/cos O)]/A. (15) 

The value of XRED can now be used instead of XBc 
to calculate the extinction correction with the help 
of the analytical approximation to the ETE solution 
given by BC (see also Kawamura & Kato, 1983): 

y-~={l+2"12x+[ax2/(l+bx)]} 1/2. (16) 

In (16) ~ Gaussian distribution for w(O) is assumed 
and a, b are given by 

a = 0.58 + 0.48 cos 2 0 + 0.24 cos 22 0, 

b = 0.02 -0 .025 cos 20. 

The practical procedure in calculating y-1 can there- 
fore be summarized as follows: first XBc is computed, 
then corrected for primary extinction by means of 
(15) (XREo results) and finally the XREO value is inser- 
ted for x into (16) which supplies the extinction 
correction. The [y(xBc)] -1 dependence for various 
values of the parameter A is demonstrated in Fig. 3; 
the A = 0.01 curves practically coincide with the BC 
result for pure secondary extinction. 

The RED model contains two free parameters to 
be adjusted by fitting in the course of data processing. 
While O~RE D has the conventional meaning, A rep- 
resents the ratio of the mean free path between sub- 
sequent reflections to the averaged beam path in the 
sample and has no analogy in the mosaic model. Its 
value is a measure of proportion between the effects 
of primary and secondary extinction. Clearly for A 
small (D~T)  there exists a high probability of 
frequent returns into a given state in the random-walk 
sequence. This corresponds to multiple reflections on 
different domains which in turn have to be small to 
fit into a crystal of finite dimensions. A case of secon- 
dary extinction results and in the limit A ~ 0 we obtain 
XREO = XBc/COS 0 from (15). The factor 1/cos 0 arises 
from the above-mentioned 0 dependence of the width 
of WRED(A0). 

On the other hand for A ~> 1 (i.e. ~/T >. 1), reflection 
on a single domain within the whole sample becomes 
more probable, with the intensity being affected 
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mainly by primary extinction. In this range (15) yields 
XRED-"I/A, implying the independence of the 
integrated reflecting power on Q and thus on the 
structure factor. This rather paradoxical behaviour 
corresponding to the saturation of the 1/y(xBc) 
dependence in Fig. 3 should not be surprising. It is 
an experimentally well established fact (Kulda, 1984, 
and references therein) that in the range of slight 
deformations r = l  [see equation (5)] and the 
integrated reflectivity is determined solely by vari- 
ation of the local misorientation along the beam path 
in the crystal. 

5. Discussion 

For the sake of simplicity the above description of 
wave propagation was based on Hamilton- 
Zachariasen rather than Kato's theory. The beam 
transport in the sample was considered as a series of 
mutually incoherent reflections on well separated 
elastically deformed domains. Although the extent to 
which this concept coincides with reality is question- 
able, some experimental justification can be found in 
works on multiple reflections of neutrons in elastically 
deformed crystals (Mikula, Michalec, Chalupa, Sed- 
l~kov~ & Petr~ilka, 1975; Kulda, Mikula, Vr~na, 
Michalec & V~vra, 1981; Vr~na, Mikula, Michalec, 
Kulda & V~vra, 1981; Kulda & Mikula, 1985). This 
simplification enabled us to take into account within 
a single domain multiple phase correlations of any 
order so that primary extinction is covered without 
limitation. 

Contrary to the mosaic model the RED approach 
emphasizes the deformed parts of the crystal. The 
reason for this is not only a matter of mathematical 
convenience. As can be observed on diffraction topo- 
graphs (e.g. Lang, 1978; Baruchel, Schlenker, Zarka 
& Petroff, 1978) the greatest part of the diffracted 
intensity (direct extinction contrast) originates from 
the surroundings of lattice defects, which are elasti- 
cally deformed and not fine grained. Moreover, the 
subgrain boundaries are formed by dislocation 
networks accompanied by lattice strains so that the 
second assumption of RED is also close to reality. 

On the other hand, it is clear that undisturbed parts 
are present in real crystals as well. They can be 
represented by za0-constant segments in the RED 
sequence corresponding to some Po transition proba- 
bility ( p_ + Po + P+ = 1). It can be proved in an elemen- 
tary way that the inclusion of such inactive segments 
will not change the stationary probability distribution 
PN (j) and the only correction has to be made in the 
definition of ? (but not ~-) replacing the previous one 
by 

f=  (TrN/2) '/2 "['/(1 - Po). 

For fixed N and /-the mean free path will become 
1/(1-Po) times larger and the parameter A will be 

rescaled at the same ratio indicating an increase of 
primary extinction. From the point of view of diffrac- 
tion theory such an approach is valid as long as the 
deformation is slight and the adiabatic approximation 
holds. In the opposite case the traditional mosaic 
model completed by a proper dynamical description 
of diffraction in individual blocks would naturally be 
the most appropriate one. 

For practical reasons we tried to follow approxi- 
mately the lines of the BC treatment, one of the 
standard approaches to extinction model fitting. All 
the modifications necessary to adapt the correction 
procedure from the mosaic model to RED can be 
performed on the basis of (15). A practical con- 
sequence of the presence of a significant value of A 
will be a saturation of the 1/y(xBc) dependence above 
some XBC value preventing extinction overestimation 
at very strong reflections. In the limit of pure secon- 
dary extinction the results of the fit should be insensi- 
tive to the model choice. The true form of the addi- 
tional factor 1/cos 0 in WRED(A0) remains a matter 
of discussion. In § 3 it appeared in a completely 
correct way; however, both the mosaic model and 
RED up to this stage assume lattice-plane misorienta- 
tions only. In reality, any deformation also involves 
changes of the interplanar spacing whose effect in 
the Bragg condition is complementary to misorienta- 
tion, being proportional to tan 0. The 0 independence 
of w(AO) takes this situation into account to a certain 
extent. Similarly, in the framework of RED it is 
possible to employ in (12) instead of cos 0/R a more 
complicated expression combining both types of 
angular variation. The necessity of this step may 
depend on the sample type and the data being fitted, 
therefore it should be discussed together with further 
possible extensions of the RED model against a back- 
ground of practical experience. 

6. Concluding remarks 

A new model for the description of diffraction 
phenomena in real crystals was presented. 
Analogously to the traditional treatment it is based 
on the solution of the energy transport equations. The 
crystal is assumed to consist of elastically deformed 
domains rather than perfect blocks. In this way the 
elementary reflections can be described within the 
quasiclassical approximation of the dynamical theory 
so that primary extinction can be covered with 
sufficient accuracy. In the simplest variant the RED 
model relies on two parameters being adjusted by 
fitting to a given intensity data set. One is equivalent 
to the conventional mosaic-width parameter for a 
Gaussian distribution while the other is completely 
new and represents the proportion of primary and 
secondary extinction. The comparison of the true 
efficiency of this new approach to other existing 
extinction models remains a matter for extensive 
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exper imenta l  tests. We hope to be able to report  on 
some results of  these in the near  future. 

I express my sincere thanks to Dr R. Michalec 
for his kind support, to Drs P. Mikula, Z. Kosina, 
V. Peffi~ek and many other colleagues for helpful 
discussions and finally to Mr A. Dvo[~ik for his help 
with the preparation of the manuscript. 
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Abstract 

The invar iant  phases of  large numbers  of  ge rman ium 
triplets, consist ing of  one forb idden  and two permit-  
ted reflections, have been de termined experimental ly .  
The fo rb idden  reflections include members  of  the 
forms {200}, {222}, {420} and  {442}. Phase effects in 
triplets conta in ing members  of  the ul tra-weak (forbid- 
den) {622} and  {640} were detected but  were too weak 
to provide rel iable phase  indications.  The phases  of  
all triplets which include a forb idden reflection and  
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the 311 reflection are observed to be negative. The 
phases of  ind iv idua l  fo rb idden  reflections, whose 
indices are descr ibed as summing  to ( 4 n - 2 ) ,  are 
equal  to ( -1)" .  The imaginary  part  of  the dispers ion 
correction to the atomic form factors is relatively large 
(0.89 for Cu K a l  radiation)" it makes significant con- 
tr ibutions to the structure factors and the phases  of  
the vanish ingly  weak forb idden  reflections. 

I. Introduction 

Reflections whose indices sum to 4 n -  2 are ' forbid-  
den '  in d iamond- type  crystals. Their  structure factors, 
calculated for atoms in posi t ions 8(a)  of  space group 
F d 3 m  (Henry  & Lonsdale ,  1952), equal  zero. In 1921, 
however,  W. H. Bragg detected intensities diffracted 
by the fo rb idden  222 reflection of  a d i a m o n d  crystal. 
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